

BSM with β Decays

Single Decays: Beta decay/electron capture

Double beta decays

Multi-isotope beta decays: reactors

(Extended) SM with β Decays: Reactors

- Reactors are copious sources of β decays
- Beta decays can directly access neutrino properties
- Reactors played a crucial role in understanding neutrino properties

Daya Bay

(Extended) SM with β Decays: Oscillation Physics

- •Reactors also played an important role in neutrino oscillation physics
- Provides some of the tightest bounds on the neutrino oscillation parameters

Motivation for Sterile Neutrino Searches at Reactors

- In 2011, predicted $\bar{\nu_e}$ fluxes were updated
 - Improvement in reactor neutrino model
 - Change in neutron lifetime
 - Inclusion of off-equilibrium effects
- Predicted flux higher with improved model
- •~6% global experimental deficit
- Discrepancy is called Reactor Antineutrino Anomaly (RAA)

A $\sim 3\sigma$ deficit was measured in reactor neutrinos experiments

Interpretation of Anomalies

- RAA could be explained by eV-scale sterile neutrinos
- Similar parameter space as suggested by the other appearance and disappearance anomalies
- Catalyzed several reactor neutrino experiments

Testing RAA: Searching for Sterile Neutrinos with Reactors

- •Sterile neutrinos at eV scale: => High frequency oscillations at short distances (<10 m)
- New models and experiments show that RAA is (at least in part) due to mismodeling

Yale

Testing RAA: Searching for Sterile Neutrinos with Reactors

- Sterile neutrinos at eV scale:
 => High frequency oscillations at short distances (<10 m)
- New models and experiments show that RAA is (at least in part) due to mismodeling
- Spectrum measured as a function of baseline would be a smoking gun evidence for sterile neutrino oscillations
- Measure spectrum within a single detector, move the detector, or both

Relative spectral searches essential to irrefutably test eV-scale sterile neutrinos

Current Limits on eV-scale sterile neutrinos

- Several short baseline reactor neutrino experiments placed limits on eV-scale sterile neutrinos
- Fits based solely on relative spectral measurements
- Significant portion of the suggested parameter space excluded: PROSPECT and other global experiments have pushed limits in the last decade
- $\sim \Delta m^2 > 5 \text{ eV}^2$ yet to be excluded

Change of Basis

Change of Basis

Upcoming Experiments

- New experiments planned to cover larger parameter space
- Will constrain larger parameter space to cover larger parameter space relevant to eV-scale anomalies
- PROSPECT II in particular exclude the controversial claim by Neutrino-4 experiment
- Also pertinent to future LBL experiments searching for CP violation

MeV-scale Steriles

• Neutrino produced in reactors could decay

$$\nu_s \rightarrow e^+ + e^- + \nu$$

- Lower threshold from electron mass
- Search for electron and positrons in the detectors
- Covers much higher neutrino mass unto an order of magnitude

Single Isotope Decays

Single Isotope Decays

EC with Single Isotope: Rate Based

- Solar neutrino experiments GALLEX and SAGE used ⁵¹Cr and ³⁷Ar as calibration sources
- Only few β decay peaks Cleaner signature
- ⁷¹Ga captures neutrino and produces ⁷¹Ge
- 71Ge chemically extracted and counted

Radioactive sources

747 keV (81.6%)
$$e^- + {}^{51}{\rm Cr} \rightarrow {}^{51}{\rm V} + \nu_{\rm e}$$
427 keV (9.0%)
752 keV (8.5%) $e^- + {}^{37}{\rm Ar} \rightarrow {}^{37}{\rm Cl} + \nu_{\rm e}$
432 keV (0.9%)
813 keV (9.8 %)
811 keV (90.2 %)

Detection: $\nu_e + {^{71}{\rm Ga}} \rightarrow {^{71}{\rm Ge}} + {\rm e}^-$

Gallium Anomaly

- Measured rate lower than expected in three different experiments
- Combined measured rate: 0.80 \pm 0.047 (> 4 σ)
- Includes measurement in a two-zone setup by BEST
- Conventional nuclear physics can't resolve the large discrepancy

Comparison in Reactor and Gallium Experiments

- The deficit from GA is too high to be compatible with reactor rates
- Also major portions of 3+1 suggested parameter space by GA excluded by relative reactor spectral data
- BEST experiment with two zones still saw similar deficit
- Plans in future to look at a higher energy isotope
 - Valuable for high frequency oscillations

EC with Single Isotope: Recoil Measurements: keV-scale

- EC to search for keV-scale steriles
- Two body decay: Peaks (vs spectrum in β decays)
- Nuclear recoils carry all the information of neutrino mass
- More details in K. Leach's talk
- Major ongoing efforts to cover upto 10 orders in mixing in a phased approach

Single Isotope Decays

Sterile Searches with Beta Decay Spectrum

- β decay is a three body problem
- Continuous electron spectrum
- Neutrino mass states cause a distortion (kink) in the beta decay spectrum
- Location of the kink depends on the mass of the sterile state
- Magnitude depends on the mixing angle
- Higher energy limited by the end point energy of the spectrum

Beta Decay Spectrum Measurements: eV—MeV

- Several experiments have placed limits using β decay spectra measurements using multiple isotopes
- Six order of magnitude covered in mass scale covered
- In many cases, not the primary goal of the experiment

Beta Decay Spectrum Measurements: Future

- Several experiments have placed limits using β decay spectra measurements using multiple isotopes
- Six order of magnitude covered in mass scale covered
- In many cases, not the primary goal of the experiment
- Several ongoing, upcoming and future experiments: Increase coverage in mass and mixing

Double Beta Decay Experiments

- Double beta decay experiments search for the Majorana nature of neutrinos
- Focus is on end point region: Look for peak near the end point
- Overall spectrum provides other opportunities
- Sterile neutrinos modifies energy spectrum (in the low energy region)
- Could search for sterile neutrinos by looking for the deviation in the spectrum

$$\frac{d\Gamma^{2\nu}(\xi)}{dE_K} = (1 - |V_{eN}|^2)^2 \frac{d\Gamma_{SM}^{2\nu}}{dE_K} + (1 - |V_{eN}|^2)|V_{eN}|^2 \frac{d\Gamma_N^{2\nu}(m_N)}{dE_K}$$

Double Beta Decay Experiments

- Double beta decay experiments search for the Majorana nature of neutrinos
- Focus is on end point region: Look for peak near the end point
- Overall spectrum provides other opportunities
- Sterile neutrinos modifies energy spectrum (in the low energy region)
- Could search for sterile neutrinos by looking for the deviation in the spectrum

$$\frac{d\Gamma^{2\nu}(\xi)}{dE_K} = (1 - |V_{eN}|^2)^2 \frac{d\Gamma_{SM}^{2\nu}}{dE_K} + (1 - |V_{eN}|^2)|V_{eN}|^2 \frac{d\Gamma_N^{2\nu}(m_N)}{dE_K}$$

Summary and Outlook

- Beta decay and electron capture are powerful tools to search for sterile neutrinos
- Using a variety of probes and an array of available isotopes, sterile neutrinos could be searched over several orders of magnitude in mass
- Ongoing dedicated efforts are expected to provide sensitivity over a large range of mixing angle
- Using different β -decay related probes provide complementarity and cross-checks

Credits

- Walter Pettus
- Kyle Leach, Vedran Brdar
- Patrick Bolton, Franck Deppisch
 - https://www.hep.ucl.ac.uk/~pbolton
- Jeffrey Berryman, Pilar Coloma, Patrick Huber, Thomas Schwetz, Albert Zhou
 - https://doi.org/10.1007/JHEP02(2022)055
- Carlo Giunti, Yufeng Li, Christopher Ternes, Zhao Xi
 - https://doi.org/10.1016/j.physletb.2022.137054
- All experimental collaborations, of course

Yale

Back up

Motivation for Sterile Neutrino Searches at Reactors

Predicted Spectrum Decay Rate Spectrum
$$S(E_{ar{
u}}) = \sum_{i=0}^{Decay} \sum_{j=0}^{Rate} f_{ij} S_{ij} (E_{ar{
u}})$$
 Branching Fraction

ab initio approach

- Use existing databases and sum the spectra from all the beta decay branches
- 1000s of branches; Databases are incomplete/wrong

Conversion method

- Measure beta spectrum and fit it to virtual branches to convert to neutrino spectrum
- Is all relevant physics captured by virtual beta branches

Reactor antineutrino predictions are very complicated

More Reactor Neutrino Context

- Daya Bay measures neutrino flux as a function of fission fractions of ²³⁵U/²³⁹Pu
- One can extract the contribution (IBD yield) of single isotope to the measured flux
- Measured ²³⁵U disagrees but ²³⁹Pu agrees well with the predictions
- Similar results from RENO
- ²³⁵U seems like the problematic isotope

Even More Reactor Neutrino Context

- Conversion method is reliant on the β -decay measurements done at ILL, France in 1980s
- Recent claim: Issue with calibration for the original ILL β -decay measurements
- New measurement of $^{235}\text{U}/^{239}\text{Pu}$ β -decay spectra performed at Kurchatov $^{2.00}$ Institute
- Shows that ²³⁵U normalization was overestimated (assuming ²³⁹Pu normalization is correct)
- No systematic uncertainties presented and peer-reviewed results not yet published

Current Reactor Neutrino Status

- Updated models:
- KI model: Conversion based on updated beta decay measurements; smaller deficit
- EF model: Summation based on improved nuclear databases; smaller deficit
- New models don't agree with canonical Huber-Mueller (HM) conversion model
- New data: Daya Bay + RENO evolution + STEREO prefer KI and EF models

Current Reactor Neutrino Status

- Updated models:
- KI model: Conversion based on updated beta decay measurements; smaller deficit
- EF model: Summation based on improved nuclear databases; smaller deficit
- New models don't agree with canonical Huber-Mueller (HM) conversion model
- New data: Daya Bay + RENO evolution + STEREO prefer KI and EF models
- Reactor mismodeling and sterile neutrinos not mutually exclusive

Current Reactor Neutrino Status

- Updated models:
- KI model: Conversion based on updated beta decay measurements; smaller deficit
- EF model: Summation based on improved nuclear databases; smaller deficit
- New models don't agree with canonical Huber-Mueller (HM) conversion model
- New data: Daya Bay + RENO evolution + STEREO prefer KI and EF models
- Reactor mismodeling and sterile neutrinos not mutually exclusive
- Rely on baseline-dependent spectral measurements to mitigate model-dependence

Long Baseline Reactor Experiment

- (Relatively) long baseline reactor experiments designed to measure θ_{13} could also search for sterile neutrinos
- Could use relative spectral comparison between detectors placed at different baselines
- Due to the baseline, sensitive to lower masses

Double Beta Decay Experiments

- Double beta decay experiments search for the Majorana nature of neutrinos
- Focus is on end point region: Look for peak near the end point
- Overall spectrum provides other opportunities
- Sterile neutrinos modifies energy spectrum (in the low energy region)
- Could search for sterile neutrinos by looking for the deviation in the spectrum

 $\frac{d\Gamma^{2\nu}(\boldsymbol{\xi})}{dE_K} = (1 - |V_{eN}|^2)^2 \frac{d\Gamma_{SM}^{2\nu}}{dE_K} + (1 - |V_{eN}|^2)|V_{eN}|^2 \frac{d\Gamma_N^{2\nu}(n)}{dE_K}$

